
FlexiPlate siRNA
- Maximum flexibility to select siRNAs, scales, and plate layout
- Economical options allow screening of more target genes
- Fast and easy access via GeneGlobe
- Cutting-edge siRNA design minimizes the risk of off-target effects
- Rapid delivery enables screening without delay
FlexiPlate siRNA provides highlyflexible RNAi screening and is available at 0.1 nmol, 0.25 nmol, and 1 nmol scales in 96-well plates,and at 0.1 nmol and0.25 nmol scales in 384-well platesfor a choice of target genes. For maximum flexibility, siRNAs can be selected and plate layout specified at the GeneGlobe Web portal. Lists of preselected siRNAs are also available for many gene families.siRNAs have been designed using HP OnGuard siRNA Design, which incorporates neural network technology, proprietary homology analysis, and advanced features, such as 3" UTR/seed region analysis, asymmetry, SNP avoidance, and interferon motif avoidance.
Note: QIAGEN does not provide FlexiPlate siRNA in pools.
- Buy Products
- Product Details
- Specifications
Buy Products
Cat No./ID:1027411 FlexiPlate siRNA, 0.1 nmol $30.00 Custom siRNA set in 96-well plate format, 0.1 nmol |
Cat No./ID:1027412 FlexiPlate siRNA, 0.25 nmol $40.00 Custom siRNA set in 96-well plate format, 0.25 nmol |
Cat No./ID:1027413 FlexiPlate siRNA, 1 nmol $69.80 Custom siRNA set in 96-well plate format, 1 nmol |
Cat No./ID:1027421 FlexiPlate siRNA (384), 0.1 nmol $30.00 Custom siRNA set in 384-well plate format, 0.1 nmol |
Cat No./ID:1027422 FlexiPlate siRNA (384), 0.25 nmol $40.00 Custom siRNA set in 384-well plate format, 0.25 nmol |
Product Details
Cutting-edge siRNA design
Advances in the siRNA design process ensure that QIAGEN"s highly innovative and sophisticated HP OnGuard siRNA Design delivers potent and specific siRNA. siRNAs are designed using neural-network technology based on an extremely large set of data from RNAi experiments. siRNA design is then checked for homology to all other sequences of the genome using an up-to-date, nonredundant sequence database and a proprietary homology analysis tool. HP OnGuard siRNA Design incorporates many unique and advanced features (see table).
Feature | Description | References |
---|---|---|
Neural-network technology | siRNA design uses the BioPredsi neural-network, which is based on an extremely large RNAi data set. | 1-3 |
The world"s largest siRNA validation project | The design process was reinforced and improved by data from this project, in which QIAGEN scientists proved the effectiveness of thousands of siRNAs. A large number of druggable genome siRNAs have been proven to provide at least 70% knockdown during this project. | 4 |
Homology analysis | Analysis uses a proprietary tool and an up-to-date, nonredundant sequence database. | |
Affymetrix GeneChip analysis | Genomewide analysis enabled development of siRNA design improvements that minimize off-target effects. | |
Up-to-date siRNA target sequences | Current data from NCBI databases ensure accurate design. | |
Asymmetry | siRNAs are designed with unequal stabilities of the base pairs at the 5" ends. This enables the antisense strand, which is less tightly bound at its 5" end, to enter RISC, while the sense strand is degraded. Asymmetry produces highly functional siRNAs and reduces the risk of off-target effects caused by the incorrect strand entering RISC. | 5, 6 |
3" UTR/seed region analysis | Analysis uses intelligently weighted, multi-parameter searches for matches of the seed region of the siRNA antisense strand with the 3" untranslated region of unintended mRNA targets (see text for further explanation). | 7-12 |
SNP avoidance | The RefSNP database is used to exclude siRNAs that span single nucleotide polymorphisms (SNPs). This increases siRNA potency, as an siRNA spanning a SNP will vary in its effectiveness. | |
Interferon motif avoidance | siRNAs are screened for multiple sequence motifs known to result in an interferon response. siRNAs with such motifs are rejected. | 13, 14 |
3" UTR/seed region analysis
Several studies have shown that off-target effects may be caused by matches of the seed region of the siRNA antisense strand with the 3" untranslated region of unintended mRNA targets (see table). The seed region comprises 6 nucleotides in positions 2–7 of the antisense siRNA strand of the siRNA duplex. Matches such as these can contribute to downregulation of unintended targets due to the siRNA mimicking the action of an miRNA. siRNA designed at QIAGEN is analyzed for 3" UTR/seed region complementarity using a proprietary set of 3" UTR sequences derived from the human, rat, and mouse RefSeq databases. Each siRNA is aligned against these sequences to check for any homology that could contribute to miRNA-like, off-target effects.
Matches of 6 out of 6 nucleotides of the siRNA seed region with an unrelated target 3" UTR sequence are common and it is not necessary or practical to eliminate siRNAs showing such matches. More rarely, seed region matches in combination with 10 or more bases of additional homology are observed in an siRNA sequence. Such homologies have greater potential to result in off-target effects, and where possible these siRNAs are rejected in favor of others with less significant homology to unintended target genes.
For some targets, it is not possible to select siRNAs that do not show any such homologies. In these cases, EntrezGene IDs of the unrelated genes that could be unintended targets of the siRNA are provided at GeneGlobe. Observation of this type of homology does not necessarily mean that these genes will be affected by the siRNA. However, they can be considered potential unintended targets for follow up analysis, if warranted.
FlexiPlate siRNA allows design of RNAi screening experiments to suit specific requirements. siRNAs for any human or mouse gene can be selected as well as any positive and negative controls required. With the user-friendly Web interface, siRNAs and controls can be placed in any of the wells of a 96-well or 384-well plate, or plate layout can be selected from a range of predefined layout patterns. siRNAs are provided in 0.1 nmol, 0.25 nmol, or 1 nmol scales, enabling economical screening using low or higher siRNA amounts, as required. The 0.1 nmol, 0.25 nmol, and 1 nmol scales are available in 96-well plates. The 0.1 nmol and 0.25 nmol scales are available in 384-well plates.
The GeneGlobe Web portal makes it easy to search for siRNAs for genes of interest and to arrange plate layouts to suit screening experiments. Lists of gene names, Entrez Gene IDs, RefSeq IDs, siRNA names, or catalog numbers can be uploaded, making the process of plate ordering fast and easy. Order plates immediately or save for later changes and ordering. Easily download plate layouts for your records.
FlexiPlate siRNA enables RNAi applications including:
- Pathway analysis
- Follow-up screening experiments
Specifications
Features | Specifications |
Design | Predesigned/HiPerformance siRNA Design Algorithm |
Format | Plate |
Guarantee/validation | No guarantee |
Modification | No |
Scale or yield | 0.1 nmol, 0.25 nmol, 1 nmol |
Species | Human, mouse |
Target sequence provided | Yes |
Product Resources
Customers who bought these products also bought
- Cat No./ID:1027285
AllStars Neg. siRNA AF 546 (5 nmol)
Thoroughly tested and validated nonsilencing siRNA, Alexa Fluor 546 modification$243.00Add To Cart - Cat No./ID:249900
QuantiTect Primer Assay (200)
For 200 x 50 µl reactions or 400 x 25 µl reactions: 10x QuantiTect Primer Assay (lyophilized) supplied in single tubeSelect Targets - Cat No./ID:1027280
AllStars Negative Control siRNA (5 nmol)
Thoroughly tested and validated nonsilencing siRNA$204.00Add To Cart - Cat No./ID:1027418
FlexiTube siRNA (20 nmol)
20 nmol siRNA delivered in tubesSelect Targets - Cat No./ID:1027281
AllStars Neg. Control siRNA (20 nmol)
Thoroughly tested and validated nonsilencing siRNA$315.00Add To Cart - Cat No./ID:1027417
FlexiTube siRNA (5 nmol)
5 nmol siRNA delivered in tubesSelect Targets